extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xDic3).1C22 = (C2xC12):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).1C2^2 | 192,205 |
(C22xDic3).2C22 = C6.(C4xQ8) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).2C2^2 | 192,206 |
(C22xDic3).3C22 = C3:(C42:8C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).3C2^2 | 192,209 |
(C22xDic3).4C22 = C2.(C4xD12) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).4C2^2 | 192,212 |
(C22xDic3).5C22 = C2.(C4xDic6) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).5C2^2 | 192,213 |
(C22xDic3).6C22 = (C2xC4):Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).6C2^2 | 192,215 |
(C22xDic3).7C22 = C6.(C4:Q8) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).7C2^2 | 192,216 |
(C22xDic3).8C22 = (C2xDic3).9D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).8C2^2 | 192,217 |
(C22xDic3).9C22 = (C2xC4).17D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).9C2^2 | 192,218 |
(C22xDic3).10C22 = (C2xC4).Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).10C2^2 | 192,219 |
(C22xDic3).11C22 = (C22xC4).85D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).11C2^2 | 192,220 |
(C22xDic3).12C22 = (C22xC4).30D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).12C2^2 | 192,221 |
(C22xDic3).13C22 = C22.58(S3xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).13C2^2 | 192,223 |
(C22xDic3).14C22 = (C2xC4):9D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).14C2^2 | 192,224 |
(C22xDic3).15C22 = D6:(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).15C2^2 | 192,226 |
(C22xDic3).16C22 = D6:C4:C4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).16C2^2 | 192,227 |
(C22xDic3).17C22 = D6:C4:5C4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).17C2^2 | 192,228 |
(C22xDic3).18C22 = (C2xC12):5D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).18C2^2 | 192,230 |
(C22xDic3).19C22 = C6.C22wrC2 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).19C2^2 | 192,231 |
(C22xDic3).20C22 = (C22xS3):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).20C2^2 | 192,232 |
(C22xDic3).21C22 = (C2xC4).21D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).21C2^2 | 192,233 |
(C22xDic3).22C22 = C6.(C4:D4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).22C2^2 | 192,234 |
(C22xDic3).23C22 = (C22xC4).37D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).23C2^2 | 192,235 |
(C22xDic3).24C22 = (C2xC12).33D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).24C2^2 | 192,236 |
(C22xDic3).25C22 = C23:C4:5S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | 8- | (C2^2xDic3).25C2^2 | 192,299 |
(C22xDic3).26C22 = C12:4(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).26C2^2 | 192,487 |
(C22xDic3).27C22 = (C2xDic6):7C4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).27C2^2 | 192,488 |
(C22xDic3).28C22 = (C2xC42).6S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).28C2^2 | 192,492 |
(C22xDic3).29C22 = C42:10Dic3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).29C2^2 | 192,494 |
(C22xDic3).30C22 = C42:11Dic3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).30C2^2 | 192,495 |
(C22xDic3).31C22 = C42:7Dic3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).31C2^2 | 192,496 |
(C22xDic3).32C22 = (C2xC4):6D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).32C2^2 | 192,498 |
(C22xDic3).33C22 = (C2xC42):3S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).33C2^2 | 192,499 |
(C22xDic3).34C22 = C24.55D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).34C2^2 | 192,501 |
(C22xDic3).35C22 = C24.14D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).35C2^2 | 192,503 |
(C22xDic3).36C22 = C24.15D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).36C2^2 | 192,504 |
(C22xDic3).37C22 = C24.57D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).37C2^2 | 192,505 |
(C22xDic3).38C22 = C23:2Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).38C2^2 | 192,506 |
(C22xDic3).39C22 = C24.17D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).39C2^2 | 192,507 |
(C22xDic3).40C22 = C24.18D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).40C2^2 | 192,508 |
(C22xDic3).41C22 = C24.20D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).41C2^2 | 192,511 |
(C22xDic3).42C22 = C24.21D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).42C2^2 | 192,512 |
(C22xDic3).43C22 = C24.23D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).43C2^2 | 192,515 |
(C22xDic3).44C22 = C24.24D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).44C2^2 | 192,516 |
(C22xDic3).45C22 = C24.25D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).45C2^2 | 192,518 |
(C22xDic3).46C22 = C23:3D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).46C2^2 | 192,519 |
(C22xDic3).47C22 = C24.27D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).47C2^2 | 192,520 |
(C22xDic3).48C22 = C12:(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).48C2^2 | 192,531 |
(C22xDic3).49C22 = C4.(D6:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).49C2^2 | 192,532 |
(C22xDic3).50C22 = Dic3:(C4:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).50C2^2 | 192,535 |
(C22xDic3).51C22 = C6.67(C4xD4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).51C2^2 | 192,537 |
(C22xDic3).52C22 = (C2xDic3):Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).52C2^2 | 192,538 |
(C22xDic3).53C22 = (C2xC4).44D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).53C2^2 | 192,540 |
(C22xDic3).54C22 = (C2xC12).54D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).54C2^2 | 192,541 |
(C22xDic3).55C22 = (C2xDic3).Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).55C2^2 | 192,542 |
(C22xDic3).56C22 = (C2xC12).288D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).56C2^2 | 192,544 |
(C22xDic3).57C22 = (C2xC12).55D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).57C2^2 | 192,545 |
(C22xDic3).58C22 = C4:(D6:C4) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).58C2^2 | 192,546 |
(C22xDic3).59C22 = D6:C4:6C4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).59C2^2 | 192,548 |
(C22xDic3).60C22 = (C2xC4):3D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).60C2^2 | 192,550 |
(C22xDic3).61C22 = (C2xC12).289D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).61C2^2 | 192,551 |
(C22xDic3).62C22 = (C2xC12).290D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).62C2^2 | 192,552 |
(C22xDic3).63C22 = (C2xC12).56D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).63C2^2 | 192,553 |
(C22xDic3).64C22 = C24.73D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).64C2^2 | 192,769 |
(C22xDic3).65C22 = C24.74D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).65C2^2 | 192,770 |
(C22xDic3).66C22 = C24.75D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).66C2^2 | 192,771 |
(C22xDic3).67C22 = C24.76D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).67C2^2 | 192,772 |
(C22xDic3).68C22 = C24.31D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).68C2^2 | 192,781 |
(C22xDic3).69C22 = C24.32D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).69C2^2 | 192,782 |
(C22xDic3).70C22 = C22.52(S3xQ8) | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).70C2^2 | 192,789 |
(C22xDic3).71C22 = (C22xQ8):9S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).71C2^2 | 192,790 |
(C22xDic3).72C22 = C2xC12:2Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).72C2^2 | 192,1027 |
(C22xDic3).73C22 = C2xC12.6Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).73C2^2 | 192,1028 |
(C22xDic3).74C22 = C2xC42:7S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).74C2^2 | 192,1035 |
(C22xDic3).75C22 = C2xC42:3S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).75C2^2 | 192,1037 |
(C22xDic3).76C22 = C23:3Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).76C2^2 | 192,1042 |
(C22xDic3).77C22 = C2xDic3:D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).77C2^2 | 192,1048 |
(C22xDic3).78C22 = C24.38D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).78C2^2 | 192,1049 |
(C22xDic3).79C22 = C2xC23.11D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).79C2^2 | 192,1050 |
(C22xDic3).80C22 = C24.42D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).80C2^2 | 192,1054 |
(C22xDic3).81C22 = C2xD6:Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).81C2^2 | 192,1067 |
(C22xDic3).82C22 = C2xC4.D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).82C2^2 | 192,1068 |
(C22xDic3).83C22 = C2xC4:C4:S3 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).83C2^2 | 192,1071 |
(C22xDic3).84C22 = C42.87D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).84C2^2 | 192,1075 |
(C22xDic3).85C22 = C42.90D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).85C2^2 | 192,1078 |
(C22xDic3).86C22 = C42.91D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).86C2^2 | 192,1082 |
(C22xDic3).87C22 = C42.92D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).87C2^2 | 192,1085 |
(C22xDic3).88C22 = C42:12D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).88C2^2 | 192,1086 |
(C22xDic3).89C22 = C42.96D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).89C2^2 | 192,1090 |
(C22xDic3).90C22 = D4xDic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).90C2^2 | 192,1096 |
(C22xDic3).91C22 = D4:5Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).91C2^2 | 192,1098 |
(C22xDic3).92C22 = C42.104D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).92C2^2 | 192,1099 |
(C22xDic3).93C22 = C42.105D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).93C2^2 | 192,1100 |
(C22xDic3).94C22 = D4:6Dic6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).94C2^2 | 192,1102 |
(C22xDic3).95C22 = C42.108D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).95C2^2 | 192,1105 |
(C22xDic3).96C22 = Dic6:23D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).96C2^2 | 192,1111 |
(C22xDic3).97C22 = D4:6D12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).97C2^2 | 192,1114 |
(C22xDic3).98C22 = C42:18D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).98C2^2 | 192,1115 |
(C22xDic3).99C22 = C42:19D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).99C2^2 | 192,1119 |
(C22xDic3).100C22 = C42.118D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).100C2^2 | 192,1123 |
(C22xDic3).101C22 = C42.119D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).101C2^2 | 192,1124 |
(C22xDic3).102C22 = C6.322+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).102C2^2 | 192,1156 |
(C22xDic3).103C22 = Dic6:19D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).103C2^2 | 192,1157 |
(C22xDic3).104C22 = Dic6:20D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).104C2^2 | 192,1158 |
(C22xDic3).105C22 = C4:C4.178D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).105C2^2 | 192,1159 |
(C22xDic3).106C22 = C6.342+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).106C2^2 | 192,1160 |
(C22xDic3).107C22 = C6.702- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).107C2^2 | 192,1161 |
(C22xDic3).108C22 = C6.712- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).108C2^2 | 192,1162 |
(C22xDic3).109C22 = C6.722- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).109C2^2 | 192,1167 |
(C22xDic3).110C22 = C6.732- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).110C2^2 | 192,1170 |
(C22xDic3).111C22 = C6.432+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).111C2^2 | 192,1173 |
(C22xDic3).112C22 = C6.442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).112C2^2 | 192,1174 |
(C22xDic3).113C22 = C6.452+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).113C2^2 | 192,1175 |
(C22xDic3).114C22 = C6.1152+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).114C2^2 | 192,1177 |
(C22xDic3).115C22 = C6.472+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).115C2^2 | 192,1178 |
(C22xDic3).116C22 = C6.492+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).116C2^2 | 192,1180 |
(C22xDic3).117C22 = C6.752- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).117C2^2 | 192,1182 |
(C22xDic3).118C22 = Dic6:21D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).118C2^2 | 192,1191 |
(C22xDic3).119C22 = C6.512+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).119C2^2 | 192,1193 |
(C22xDic3).120C22 = C6.1182+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).120C2^2 | 192,1194 |
(C22xDic3).121C22 = C6.522+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).121C2^2 | 192,1195 |
(C22xDic3).122C22 = C6.532+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).122C2^2 | 192,1196 |
(C22xDic3).123C22 = C6.772- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).123C2^2 | 192,1201 |
(C22xDic3).124C22 = C6.562+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).124C2^2 | 192,1203 |
(C22xDic3).125C22 = C6.782- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).125C2^2 | 192,1204 |
(C22xDic3).126C22 = C6.792- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).126C2^2 | 192,1207 |
(C22xDic3).127C22 = C6.802- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).127C2^2 | 192,1209 |
(C22xDic3).128C22 = C6.812- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).128C2^2 | 192,1210 |
(C22xDic3).129C22 = C6.822- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).129C2^2 | 192,1214 |
(C22xDic3).130C22 = C6.632+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).130C2^2 | 192,1219 |
(C22xDic3).131C22 = C6.642+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).131C2^2 | 192,1220 |
(C22xDic3).132C22 = C6.652+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).132C2^2 | 192,1221 |
(C22xDic3).133C22 = C6.662+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).133C2^2 | 192,1222 |
(C22xDic3).134C22 = C6.672+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).134C2^2 | 192,1223 |
(C22xDic3).135C22 = C6.852- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).135C2^2 | 192,1224 |
(C22xDic3).136C22 = C6.692+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).136C2^2 | 192,1226 |
(C22xDic3).137C22 = C42.233D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).137C2^2 | 192,1227 |
(C22xDic3).138C22 = C42.137D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).138C2^2 | 192,1228 |
(C22xDic3).139C22 = C42.138D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).139C2^2 | 192,1229 |
(C22xDic3).140C22 = C42.139D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).140C2^2 | 192,1230 |
(C22xDic3).141C22 = C42.140D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).141C2^2 | 192,1231 |
(C22xDic3).142C22 = C42.141D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).142C2^2 | 192,1234 |
(C22xDic3).143C22 = Dic6:10D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).143C2^2 | 192,1236 |
(C22xDic3).144C22 = C42.234D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).144C2^2 | 192,1239 |
(C22xDic3).145C22 = C42.143D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).145C2^2 | 192,1240 |
(C22xDic3).146C22 = C42.144D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).146C2^2 | 192,1241 |
(C22xDic3).147C22 = C42.145D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).147C2^2 | 192,1243 |
(C22xDic3).148C22 = C42.159D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).148C2^2 | 192,1260 |
(C22xDic3).149C22 = C42.160D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).149C2^2 | 192,1261 |
(C22xDic3).150C22 = C42.189D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).150C2^2 | 192,1265 |
(C22xDic3).151C22 = C42.161D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).151C2^2 | 192,1266 |
(C22xDic3).152C22 = C42.162D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).152C2^2 | 192,1267 |
(C22xDic3).153C22 = C42.163D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).153C2^2 | 192,1268 |
(C22xDic3).154C22 = C42.164D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).154C2^2 | 192,1269 |
(C22xDic3).155C22 = C42.165D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).155C2^2 | 192,1271 |
(C22xDic3).156C22 = C42.166D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).156C2^2 | 192,1272 |
(C22xDic3).157C22 = C42.238D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).157C2^2 | 192,1275 |
(C22xDic3).158C22 = Dic6:11D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).158C2^2 | 192,1277 |
(C22xDic3).159C22 = C42.168D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).159C2^2 | 192,1278 |
(C22xDic3).160C22 = C2xC12.48D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).160C2^2 | 192,1343 |
(C22xDic3).161C22 = C2xC23.28D6 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).161C2^2 | 192,1348 |
(C22xDic3).162C22 = C2xC12:7D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).162C2^2 | 192,1349 |
(C22xDic3).163C22 = C2xD6:3D4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).163C2^2 | 192,1359 |
(C22xDic3).164C22 = C2xD6:3Q8 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).164C2^2 | 192,1372 |
(C22xDic3).165C22 = C6.1042- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).165C2^2 | 192,1383 |
(C22xDic3).166C22 = C6.1052- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).166C2^2 | 192,1384 |
(C22xDic3).167C22 = C6.1442+ 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).167C2^2 | 192,1386 |
(C22xDic3).168C22 = C6.1082- 1+4 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).168C2^2 | 192,1392 |
(C22xDic3).169C22 = C2xQ8oD12 | φ: C22/C1 → C22 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).169C2^2 | 192,1522 |
(C22xDic3).170C22 = Dic3.5C42 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).170C2^2 | 192,207 |
(C22xDic3).171C22 = Dic3:C42 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).171C2^2 | 192,208 |
(C22xDic3).172C22 = C3:(C42:5C4) | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).172C2^2 | 192,210 |
(C22xDic3).173C22 = C6.(C4xD4) | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).173C2^2 | 192,211 |
(C22xDic3).174C22 = Dic3:C4:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).174C2^2 | 192,214 |
(C22xDic3).175C22 = S3xC2.C42 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).175C2^2 | 192,222 |
(C22xDic3).176C22 = D6:C42 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).176C2^2 | 192,225 |
(C22xDic3).177C22 = D6:C4:3C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).177C2^2 | 192,229 |
(C22xDic3).178C22 = C4xDic3:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).178C2^2 | 192,490 |
(C22xDic3).179C22 = C42:6Dic3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).179C2^2 | 192,491 |
(C22xDic3).180C22 = C4xC4:Dic3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).180C2^2 | 192,493 |
(C22xDic3).181C22 = C4xD6:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).181C2^2 | 192,497 |
(C22xDic3).182C22 = Dic3xC22:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).182C2^2 | 192,500 |
(C22xDic3).183C22 = C24.56D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).183C2^2 | 192,502 |
(C22xDic3).184C22 = C24.58D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).184C2^2 | 192,509 |
(C22xDic3).185C22 = C24.19D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).185C2^2 | 192,510 |
(C22xDic3).186C22 = C24.60D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).186C2^2 | 192,517 |
(C22xDic3).187C22 = Dic3xC4:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).187C2^2 | 192,533 |
(C22xDic3).188C22 = (C4xDic3):8C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).188C2^2 | 192,534 |
(C22xDic3).189C22 = (C4xDic3):9C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).189C2^2 | 192,536 |
(C22xDic3).190C22 = C4:C4:5Dic3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).190C2^2 | 192,539 |
(C22xDic3).191C22 = C4:C4:6Dic3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).191C2^2 | 192,543 |
(C22xDic3).192C22 = (C2xD12):10C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).192C2^2 | 192,547 |
(C22xDic3).193C22 = D6:C4:7C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).193C2^2 | 192,549 |
(C22xDic3).194C22 = C2xC6.C42 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).194C2^2 | 192,767 |
(C22xDic3).195C22 = C4xC6.D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).195C2^2 | 192,768 |
(C22xDic3).196C22 = C24.29D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).196C2^2 | 192,779 |
(C22xDic3).197C22 = C24.30D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).197C2^2 | 192,780 |
(C22xDic3).198C22 = (C6xQ8):7C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).198C2^2 | 192,788 |
(C22xDic3).199C22 = C2xC4xDic6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).199C2^2 | 192,1026 |
(C22xDic3).200C22 = C2xC42:2S3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).200C2^2 | 192,1031 |
(C22xDic3).201C22 = C2xC4xD12 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).201C2^2 | 192,1032 |
(C22xDic3).202C22 = C2xDic3.D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).202C2^2 | 192,1040 |
(C22xDic3).203C22 = C2xC23.8D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).203C2^2 | 192,1041 |
(C22xDic3).204C22 = C2xC23.9D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).204C2^2 | 192,1047 |
(C22xDic3).205C22 = C2xDic6:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).205C2^2 | 192,1055 |
(C22xDic3).206C22 = C2xC12:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).206C2^2 | 192,1056 |
(C22xDic3).207C22 = C2xDic3.Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).207C2^2 | 192,1057 |
(C22xDic3).208C22 = C2xC4.Dic6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).208C2^2 | 192,1058 |
(C22xDic3).209C22 = C2xS3xC4:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).209C2^2 | 192,1060 |
(C22xDic3).210C22 = C2xC4:C4:7S3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).210C2^2 | 192,1061 |
(C22xDic3).211C22 = C2xDic3:5D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).211C2^2 | 192,1062 |
(C22xDic3).212C22 = C2xD6.D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).212C2^2 | 192,1064 |
(C22xDic3).213C22 = C2xC12:D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).213C2^2 | 192,1065 |
(C22xDic3).214C22 = C42.88D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).214C2^2 | 192,1076 |
(C22xDic3).215C22 = S3xC42:C2 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).215C2^2 | 192,1079 |
(C22xDic3).216C22 = C42.188D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).216C2^2 | 192,1081 |
(C22xDic3).217C22 = C42:10D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).217C2^2 | 192,1083 |
(C22xDic3).218C22 = C4xD4:2S3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).218C2^2 | 192,1095 |
(C22xDic3).219C22 = C42.102D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).219C2^2 | 192,1097 |
(C22xDic3).220C22 = C42:14D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).220C2^2 | 192,1106 |
(C22xDic3).221C22 = C12:(C4oD4) | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).221C2^2 | 192,1155 |
(C22xDic3).222C22 = (Q8xDic3):C2 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).222C2^2 | 192,1181 |
(C22xDic3).223C22 = C4:C4.187D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).223C2^2 | 192,1183 |
(C22xDic3).224C22 = S3xC22:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).224C2^2 | 192,1185 |
(C22xDic3).225C22 = C4:C4:26D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).225C2^2 | 192,1186 |
(C22xDic3).226C22 = C4:C4.197D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).226C2^2 | 192,1208 |
(C22xDic3).227C22 = C22xDic3:C4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).227C2^2 | 192,1342 |
(C22xDic3).228C22 = C22xC4:Dic3 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).228C2^2 | 192,1344 |
(C22xDic3).229C22 = C2xC23.26D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).229C2^2 | 192,1345 |
(C22xDic3).230C22 = C2xC4xC3:D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).230C2^2 | 192,1347 |
(C22xDic3).231C22 = C2xC23.12D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).231C2^2 | 192,1356 |
(C22xDic3).232C22 = C2xC12:3D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).232C2^2 | 192,1362 |
(C22xDic3).233C22 = C2xDic3:Q8 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).233C2^2 | 192,1369 |
(C22xDic3).234C22 = C2xC12.23D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).234C2^2 | 192,1373 |
(C22xDic3).235C22 = Dic3xC4oD4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).235C2^2 | 192,1385 |
(C22xDic3).236C22 = (C2xD4):43D6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 48 | | (C2^2xDic3).236C2^2 | 192,1387 |
(C22xDic3).237C22 = (C2xC12):17D4 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).237C2^2 | 192,1391 |
(C22xDic3).238C22 = C23xDic6 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 192 | | (C2^2xDic3).238C2^2 | 192,1510 |
(C22xDic3).239C22 = C22xC4oD12 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).239C2^2 | 192,1513 |
(C22xDic3).240C22 = C22xS3xQ8 | φ: C22/C2 → C2 ⊆ Out C22xDic3 | 96 | | (C2^2xDic3).240C2^2 | 192,1517 |
(C22xDic3).241C22 = Dic3xC42 | φ: trivial image | 192 | | (C2^2xDic3).241C2^2 | 192,489 |
(C22xDic3).242C22 = S3xC2xC42 | φ: trivial image | 96 | | (C2^2xDic3).242C2^2 | 192,1030 |
(C22xDic3).243C22 = C2xC23.16D6 | φ: trivial image | 96 | | (C2^2xDic3).243C2^2 | 192,1039 |
(C22xDic3).244C22 = Dic3xC22xC4 | φ: trivial image | 192 | | (C2^2xDic3).244C2^2 | 192,1341 |
(C22xDic3).245C22 = C2xQ8xDic3 | φ: trivial image | 192 | | (C2^2xDic3).245C2^2 | 192,1370 |
(C22xDic3).246C22 = C22xQ8:3S3 | φ: trivial image | 96 | | (C2^2xDic3).246C2^2 | 192,1518 |